Sanitizer and Oxidizer Product Information Summaries

John A. Wojtowicz Chemcon

Summary sheets containing product description, properties, and performance data for various sanitizers, oxidizers, and sanitation systems shown below are based on the following published papers:

- Wojtowicz, J. A., "Survey of Swimming Pool/Spa Sanitizers and Sanitation Systems", Journal of the Swimming Pool and Spa Industry 4(1)2001:9-29.
- Wojtowicz, J. A., "Use of Ozone in the Treatment of Swimming Pools and Spas", Journal of the Swimming Pool and Spa Industry 4(1)2001:41 - 53.

Some of the categories covered in the summaries include: disinfection, algae control, oxidation of contaminants, cost, and cost effectiveness.

- 1. Chlorine
- 2. Bromine
- 3. Ozone: Data on Disinfection and Oxidation
- 4. Ultraviolet (UV) Ozone
- 5. Corona Discharge (CD) Ozone (DIN Design)
- 6. Corona Discharge (CD) Ozone (Modified DIN Design)
- 7. Copper, Silver, and Zinc
- 8. Copper-Silver Ionizers
- 9. Copper-Silver Cartridges
- 10. Zinc-Silver Cartridges
- 11. Potassium Monopersulfate
- 12. Potassium Peroxydisulfate (Persulfate)
- 13. Polyhexamethylene Biguanide (PHMB)
- 14. Ultraviolet Light (UV) and Hydrogen Peroxide
- 15. Reaction of Ancillary Chemicals with Chlorine and Bromine

Originally appeared in the

Journal of the Swimming Pool and Spa Industry

Volume 5, Number 1, pages 20–38

Copyright © 2004 by JSPSI

All rights of reproduction in any form reserved. 154

		1. CHLORINE		
Sources		Form	% A Y CI	\$Ablay, Cl
	Chlorine	Liguetied Gas	100	<100
	Calaium Hyposhlatite	Gran vlar & Tablets	65 (75)	3,77
	Lithium Hypochlorite	Granular	35	~8 50
	Sodium Hypochlorite	Liquid	10	~1 50
	Sodium Dichlororsocyanurat	e Granular	56 (63)	321
	Trichloroisocyanuric Acid	Granular & Tablets	90	2.22
ActiveAgent	• At pod pH, allo hi ofine produ-	ots pro vide free availableo hi	l dine (FAC).	
_	 FAC consists of the disinfecta 	nt hypophlorous aoid (HOC)) and hypochlorit	e ion (ClOff).
	The concentration of HijiJis	Controlled is write equilibrium	n:	
	HOO = H' + OO boization	constant $K_{\bullet} = [H'][G][G][V][H]$	101 = 2.88 x 10 ⁻⁸	at 25°C
	$HOCIVICION = H'VK_{\bullet} = 10^{10}$	"K. = <u>ም</u> ርምር መስዘ 754		
Decomposition	 Ibstabilized chlorine is more: 	ban 90% decomposed by s	aunlight (>290 nm) in a few bours due to the
By Sunlight	photoinstability of hypochlorite	ion, which has maximum ab	serption at 290 r	im but absorbs UV light out to
	350 nm.		-	-
Stabilization	 Chlorine is stabilized by cyan 	urio acid (CA) against deoon	nposition by sunli	ght primarily by formation of
	m choch I croisocyanurate i ch, u	hbh abs orbs UV light well b	pelow 290 nm @.,	215 nm), •Photochemical
	deoomposition is ~1-2%/daya	nd thermal decomposition is	⊷13%/day (<u>Mó</u> j	towioz 2002).
Li sinfection	Effection PH	 Lisinfection rate changes 	with pHolie to th	e ohahgihg rat lo
		rHOCIyrciO-1.	-	
		- increased ionization of Hit	DCI at higherp Hi	s offset by increased
		hydrolysis of chloroisocyan	urates.	
	Effect of Temperature	 Disinfection rate increase: 	s by 260 % from 7	′5 to 85° F.
	Effect of Cyanuric Acid	 Decreases disinfection rate 	te by reducing the	e equilibrium conc. of HOCI.
	Effect of Ammonia and	 Decreases disinfection rate 	te by formation of	f chloramines (ie, combined
	Amino-N Compounds	chl dine, CAC) that strongly	ybind HOCI.	
	Effect of Microorganism	Ct (5°C, pH 6-7)	99%	Kill Time t(min.)
		<u></u>	Û:	= 0.5 ppm av. ũ
	E.coli	0.034-0.05		0.068-0.10
	Poli <i>o 1</i>	1.1-2.5		2.2-5.0
	Rotavirus	0 01-0.05		0 02-0.10
NSPI Recom-		Minimum	ldeal	Maximum
Mendations	FA ((ppm): Pools	1	24	10
	FAC (ppm): Spas	2	3-5	10
	ር (ppm)	Û	Ũ	2 ₀ 2
for chloroiso-	Cyanürio Aoid (ppm)	10	30-50	150
organizate or	pH	72	74-7.%	7.8
	Carbonate Alkalinity (ppm)	60	80–100*	180
pools.	Caloium Hardness (ppm)	150	200-400	500-1,000+
Algae Control	 Chlorine at 2 ppm is toxio to n 	hanyspeoies of algae <u>(Palm</u>	<u>ier and Maloney i</u>	<u>1955).</u>
	 Anewly formed green algae b bl gine en 11b gelaium blog 	loom oan be completely oxi	idized by a single	shock dose of hypochlorite
	- As information of block stores	in the period of gais.		
	• An intestation of black algae (an usualiy be eradicated wi ra'sa awarin a	in a triple shock (icse crhypodiichte chichne
Dvictation of	Chlorine oxidizes contaminant	ts such as ammonia, urea, a	amino aoids, orea	minine eto
Contaminants	- Ammonia reports with chloring	te form oblemmines, crea, a	of which (og tria	Normina) are estantial ave
	irritants. Ammonia chloramine	s absorb UV light and are th	nerefore decompo	is a left sunlight.
	 Ammonia is oxidized his bread 2NU - 2HOCL - N - 2HOL 	kpoint chlorination via the	overall reaction:	
	• For example, 0.25 ppm arms	ongo pria N (1.26 ppm, CAC as m	onooblorarrine`) i	s 87% oxidized by 3.55 ppm
	av. Cl in 10 minutes at pH7.5;	and 20-25°C (W dtowb z 19	<u>99).</u>	s of k oxidized by 0 oo ppin
	 Oxidation of other nitrogen oo ammonia 5 amino advis 5 ures 	mpounds is slower, the read a > cre at hine	tion rate varying	in the following order:
Cost	Chlorine in its various forms is	the most economical and o	not effective met	hod of swimming pool and ma
	sanitation on the sindle server	n <i>s</i> anitizer cost for a 25 980) gal, recidential (with the pool is a pool of the spanning pool of the spanning pool is a pool of the spanning p
	using Trichlor tablets for maint	enance and liquid bleach for	r shock treatment	is less than \$100.

2. BROMINE									
Sources	Bramine .	രണമപ്പെയും	Form		- % Equiv Av. C	\$per/bEquiv.Av.Cl			
	Bromochlerod (90	imethylhydantoin 'DMH)	Granular - ಗ್ರಾಮಿಚ್	8	56.4 (actual)	7.80			
	63.5%, av. B	r, 28.2% av. Cl	90.4% puri	itγ					
	Dibromodim	ethylhydantoin	Granular Tablets	&	496 (theoretica) Not Available			
Generation of Bromine	 Bromine can be chicroisocyahura 	egenerated in situ f tes.mohopersul tat i	rom bromide io e, czone, or el	n plus ect rice	s oxidizing agent: a। हा ergy.	such as hypochlorites,			
Active Agent	●AtpccipH,allt (\{\CBr)aswella	oromine products pr shypobromite ion (ovide free avai 19707)	ilable	bromine, ie, the (isinfectant hypobromous acid			
	• The concentrati	ion of HOBriscont	rolled by the eq	quilibr	ium:				
	HO& ≓ H'+ <u>F</u>	ro- bnization con	staot K _e = [H']	į́₿rΩ-]/[HOBr] = 7.2 x (0° at 25°C.			
	[HOBr]/[BrO*] =	[Η [']]/Κ _Α = 10 ^{-σΗ} /Κ _Α	= 82/18 @ pH	7.5 =	50.50 @pH8.1				
Decomposition by Sunlight	 As with chlorine, unstabilized bromine is more than 90% decomposed by sunlight (≥290 nm) in 3 hours due to the photoinstability of hypobromite ion, which has maximum absorption at 330 nm but absorbs LM light out to about 390 nm. 								
Decomposition	 Hypochlorite lot 	n cah deave the hy	dan tolh n⊓g,es	speola	ally at higher pH,	eg, dich lorod meth yih ydant o'r			
by Hypochlorite	forms NCI ₂ , CO ₂	and N-chloroisopr	opylamine						
Stabilization Woitowicz 2000	 Bromine can be partially stabilized by dimethylhydantoin (DMH), eg. 50 ppm DMH reduces decomposition from ~ 100 % to 75 % in four hours. 								
	■ By contrast, 30	0 ppm cyanuric acio	is required fo	attain	<u>na similar improv</u>	ement.			
Factors Affecting Disinfection	Effect of pH • Athough the disinfection rate ohanges with pH due to the chang ratio [HOBr]/[BrO ⁻], it is less sensitive to pH than in the oase of chl dine								
	Effect of Temperature • As with HOCI, disinfection rate increases with temperature.								
	Effect of Limet	winydantoin 🔹 i	De Cne al ses di Sin	ntectio	on _{rate} by reducin	g the equilibrium			
	Concentration	co	cnœntration of	HOBr	г.				
	Effect of Ammonia and Amino-N Compounds stable than chloramines								
Disinfection Data	 On a ppm basis 	, bromine is a less	effective bacte	naide	than chlorine, eg	, 3 ppm FAC from			
<u>Gerba & Naranio</u> 1999	hypochlorite prov pH7.5.	vided 99.99% inacti	vation of S. fae	ecalis	and <i>P. aerugin</i> os	a after 2 minutes at 25°C and			
	 By comparison, the same condition 	,5 ppm electrogene ທາຣ (see the ow).	erated bromine	(EGB	9)provided 92.8 a	nd 855 % inactivation under			
		%-i	nactivation (5	ppm	Free Av. Bromin	e,25°C,pH75)			
	Time (min.)	<u>S. faec</u>	дайе. Верми	+-	<u>, P</u>	2872987952 DCDWU			
	iime (min.)	EUB 02.0	BCDMH 88.1	+-	06.6	BCDMH 05.0			
	4	92.0	00.1	+	00.00	00.2			
NSPI Recom-		39.9	Minimum		deal	Maximum			
mendations	Free & v. Br (pp)	m):Pools & Spas	2		4-6	10			
	pН	/· •	72		7.4-7.6	7.8			
	Cartomate Añva	linity (ppm.)	ŵ		100-120	180			
	Calcium Hardne	ess (ppm)	150		200-400	500-1,000+			
Ngee Control	 As with chloring 	<u>, hromine is toxic tr</u>	n many species	<u>e of al</u>	gze.				
Uxidation of	Bromine oxidize	es contaminants su	<u>oh as ammonia</u>	and	urea faster than (hlorine.			
Concarninarius	Ine oxidation o 2 NH₂ + 3HOBr _	$fammonia is simila rac{1}{2} N_2 + 3HBr + 3H_2($	rto breakpoint)	chion	ination:				
	 As with chloring following order: a 	e, exidation of other ammonia > amino a	nitrogen.comp olds > urea > (oreati	s is slower, the re nine.	action rate varying in the			
Eye and Skin	 Ammonia brom 	amines are less irrit	tating fo the ey	es tha	an ohlorarrines.				
Initiation	∙instan ≎es crísió (Britisn Medical .	n irritation (itch and Journal 13 August 1	i rasit) have be 1983).	en re [Porteo in Poolsar	oʻspastreateoʻwith BCDMH			
Cost	- Bromine sanitat	ion is more expens	ite than chlorin	e sar	nitation.				

3. OZONE: DATA ON DISINFECTION AND OXIDATION										
Ozone Disinfection Data Although cone is a broad-spectrum disinfectant (see data below), the disinfection rate ca										
Hoff 1986		be affected by pres	ence of readily	oxidiz able mat	izable matter.					
	1	Mionooro	nanism		Of (non-min) @ 5°C and 6-7 pH					
	ł	E c O li			00					
	ŀ	Polio 1		_		01_02				
	ł	Polacinus		_		0.0e=0.06				
	ł	G Lamblia avete		_		0.400 000				
		G. Lambra cysts		_		10.00				
		<u>G. marseyses</u>			<u> </u>					
Laboratory La	ta at ~22°C an	nd pH 7.5 on Uxidat	ion of Swimm	ing Pool/Spa	Pool/Spa Contaminants at High Contaminant and					
<u> </u>	· _1		ncertrations (untennez 198	<u>91</u> C-					
Lontar	ninant	Uzone	Reaction	Mois u	Jzone Co	nsumed per Mol Contaminant				
			Lime							
	Conc. (ppr)) ppm	Mins.	Theoret	'cal	Calc'd *(Found)				
Urea	26,9	12.4	68	8		003 (001)				
Ammoní a	1.6	11.4	50	4		02(03)				
Ghicine	6.7	13.8	13	7		32(29)				
Creatinine	10.1	14.5	77	18		18 (0.3)				
*Based on publis	hed rate const	ants (Hoigne et al 19	83-1985).							
sares on papilo			Calculated	Deta on Ovide	tion of C	optaminante				
- Calculated data	for corre	Contaminant	Nitsome		ant I C	alc'd & Contaminant Oxidation				
	tor some		DOD			aic d. // containinant oxidation				
	ands are	Lines	0.678	1.077		0.005				
Dased on Tipping	iotarini, i		0.810	1,800	_	0.002				
ppm CD ozone, a	ino a z-	Monochioramine	0.0443	0.163		22				
minutereaction ti	meusing 	Glycine	0.0433	0232		14				
published rate oo	nstant data	Creatinine	0.0363		0 098 0.03					
at 20°€:		A) Bigroducts amn	nonia and form	aldeh yde are 's	តាក្នុមស្វែហា	uvidized.				
Comparative Ca	Culated		Initial Contar	minant Oxidat	ion Rate	(%permin.)*				
Data on Oxidatio	onof	Contaminant	nzo	one	CPIOUL	ne ^v Bromine ^v				
Contaminants			1.6 ppb ^e	1.0 ppm ^e	23 pp	m 46ppm				
		Ammonim ion	0	0	3.8	79				
		Ammonia	1.6x10ª	001	- 38	79				
		Monochloramine	1.7×10 ⁻²	1.1	>3.8	>7.9				
		Urea	1,3x10°	8x10°	۱۱.0	0.23				
		Creatinine*	1.1×10 ^{-a}	7×10™	0.06	0.04				
		Glydneh	1.5×10**	1,7	0.33	>2,6				
A) pH 7.5, 20-25*	C. 0.25 ppm b	ound nitrogen per og	ontaminant, B')	Caloulated dat	a for stea	dv state UV ozone concentration				
in spas. C) Calou	lated for initial	CD ozone oono, in s	wimming pool	contact ohamb	er. D) B	perimental data (Woitowicz 1998				
and 2000), E) F a	n brian carno na bri	n to CO ₂ and nitrate	for a me and	CO ₂ and nitmo	ien for _o h	dine.				
Summary of Oz	one's	 Despite its high op 	idation potenti	al (2.07 volts).	the react	ivity of ozone toward organio				
Û xî ciatî ve 🕻 Ca Dab	uities	men er varie andriet	v rovat i i orda	rs o imagnituri	e)Bhridi	6.eΠdc0Πthe0rΩn altimationality				
		ot a compound as	well as that of i	ts by products	ea, the in	utial rate constant for oxidation of				
		the amino acid ava	lanina ic 6 4×10	1 [°] L (mol/see	horazeth	at for the boomducts appropria				
		acetaldebude and	acetic acid are	20 1 5 and <	2×10 ⁻⁰ -17	mol/sec respectively				
		 Ozone reports excl 	ee din aby demby	with urea (the	main hat	ther contaminant) and also douby				
		- Ozone reads exc	ee diingiy soony 	- will diela (ille 		and also scory				
		will another pauler	contaminant;	areaunine. • De	composi	ng ozone does not appear to affeor				
		the rate of reaction.								
		• Uz one does not react at all with ammonium i on (the main form of ammonia at pod pH), but								
		does react slowly with the small fraction of ammonia as well as with its chlorinated product:								
		mprochloramine.								
		 Ozone only partial 	lly oxidizes org	anio matter an	d reacts p	on manly with readily oxidzable				
		functionalities such	as amine (-NH	and sulfryd) ہے۔ محمد منتقد	nyl (-SH) i	groups (present in arrino acids				
		and possibly protie	naceous matte	r) and with oor	npounds	oontaining reactive carbon-oarbon				
			C 3							
1		double bonds (-C=	<u>C-).</u>							
i		■ Both chi office and	<u>C-).</u> bromine are be	etterovera∥ox	Idants for	bath ero ontaminants as shown in				

		4. ULTRA VOILET (UV) OZONE					
Device Description		 Aplastic enclosure containing one or more UV/lamps, fitted with an air inlet and 					
		outlet.					
Principle of Operation		 UV light dissociates oxygen into atoms that react with oxygen molecules forming a 					
İ		verylow ogone cono.(0,0,3–0,0,7 vol, %) that is injected into the water via a vacuum					
		venturi in the return line.					
Claighed 820ne 8utput		Prodis: 0.25–0.83 gh; Spas: 0.042–0.33 gh					
Contact/Reaction Chan	nber	 None 					
Calc'd. Ozone Absorpti	ion	Pools: 71–87%; Spas: 83–94%					
Ozone Offgas Destruct	ion	 None 					
Calc'd. Ozone Conc. In	Offgas	Pools: 58 ppm; Spas: 67 ppm					
Laice geady gateoz	ane jana.	POol 51 0-340 78 PPb					
Before Reaction		Spas: 0.35–3.0 ppb					
Calc'd. Time to 99% St	eady State	Pools: 40 min.; Spas: 9 min.					
		Testing of UV Ozonators					
Disinfection	 Spatests (vith UV ozone (0.25 g/h) alone showed a very slow disinfection rate (~0.8 %/min.) of					
	bather-intro,	duced bacteria as the water was heated from 77 to 95°F over a two-hour period, •Tests					
	atspatemp	erature (~ 100°F) showed no killing of bacteria over a 30-min. period (<u>Woitowicz, 1985)</u>					
	■ Ūthi⇔ test	sat 116° Fishow edisimilair resultis (<u>Wattiet al 1999)</u> ,					
	 Conclusion 	n: Ozone concentration foc low (as shown above) for significant effect on disintection.					
Algee Centrol	- Swimming	pon/tests with UV or one (0.5 and 1.0 g/h) resulted in green algae blooms after 3 and					
(Woltowicz 1985)	4 days desp	ite continuous ozonation.					
Qxidation of	 No oxidation 	on of urea was observed under spa oonditions over a 36-hour period at an ozone feed					
Contaminants	rate of 0,3 g	/hour (<u>Wortowicz 1985)</u> .					
	 Other tests 	; showed similar results (<u>Adams et al 1999)</u> ,					
	• ໂດງເປັນເອັດ	n: Ozon e conventration to o low (as shown ab ove) tor significant effection oxidation.					
Generation of	 Spatests a 	π 25 and 35°C with UV ozone (0.3 g/h) resulted in available bromine generation					
Bromine From	efficiencies	of only 21 and 8%, respectively:					
		Assessment					
Chlorine Concentration	J •War	Uract uren Recommendation : Typically about 05-1.0ppm					
	 Tec 	hnical Assessment: The minimal effect of UV czone on disinfection does not support					
	claim	ns of reduced obtaine maintenance concentrations.					
	• The	refore, current NSPI recommended ideal free chlorine levels for pools (2-4 ppm) and					
	spas	(3-o ppm) would be necessary for adequate disinfection.					
uniorine Usage	• Cla	iims; up to 50–80 % reduction.					
	• Teo • OXMa	hmidal Assessment: The minimal effection disinfection and lack of significant frion_canadity_does.not_support_datms of reduced_chipTheusage.					
Operational and Analyt	ioal No I	uavto telli tunit is operating property					
Deficiencies	• Dzo	way to term one is operating property.					
	- <u>0</u> - No 1	way to tail if jamps need replacement					
	- No 1	method to measure the low ozone concentrations					
Safety	- The	The of exercising the structure pages a potential togety problem in indeer spacidue					
ouncey	to oz	ope build up					
	• OS	one pana up. Hé permissible evolution limit is o 1 ppm for 20 % blaut evolutions					
NSE Testing	- 0-4	vone opene deperator (rated at 1a/b) upper to the moder explosition.					
in the second	res:	erino 2 pom oblorin eta 4 pom bromise					
Cost	III III	ozone generators, with production ratios of 0,25 to 0,44 c/b for pools of 18,000 to					
	50.00	10 gals, retail for \$500 to \$700					
	• The	se units come with pentury-type injectors but do not have air filters, doiers, or ozone					
	offna	s destruction.					
1	∎ ∎ The	I Milamosre autre la stiodo replacem ent					
		extended for the case of the c					

5. CORONA DISCHARGE (CD) OZONE: DIN 19643							
CD Ozone Generation	 Typically, ocone is get required ozone concent 	renated electrically ration is ≥18 g/m²	າ(ies by ເບເກ ມ (∾1.5 wt. %).	a diaxharge) forn very dry ain The			
The Ozohe-Granular Activa-	Applicability	 Large public po 	ols with high b	ather loads.			
ted Carbon (GAC) Process	Treatment	 Flooculation (1) 	g/mª Alum), ra	apid sand filtration, full flow			
DIN 1984	Sequence	ozonation, GAC chlorination,	filtration, ozon	e offgas destruction, and			
	Ozone Dosage	■0.8–10 ppm if:	28°C				
	_	• 1,j-12 ppm ab	Ove28⊧į				
	Contact Time	■≥2 minutes; allo	ows inactivatio	n of microorgan-isms and a			
	(min-)	moderate reduct contaminants.	ian of COD by	rpartial oxidation of bather			
	GAC Filtration	 Destroys czone 	: (to ⊴0.05 ppr	n) and chicrine.			
	Chlorine Dosage	∎0,5 ppm					
	Pool Turnover Time	■~2 hours					
	Water Purge	■~30Lbatherto	limit mineral _S	alt build-up.			
Disinfection Objectives	Combined Chlorine		≤0.2 ppm @	pH 7 2-7.8			
	0 Xdation-Reduction (Potential (ORP)	750 mv.@ 770 mv@.	pH65-7.5 pH75-7.8			
	Effective Kill, Time		~30 second:	5			
	Bacterial Colonies		<100 per ml	_			
	E. coli		0 per 100 m	L			
Algae Control	 Atthough ozone is toxi 	o to many species	of algae, It is	not used as the primary sanitizer.			
Chemical Oxygen Demand (COD) Reduction Data	 Studies show that the to a COD of 4.0 g KMh 	average organio p 0./cu, meter,	ollutants ente	ning the pool per bather oorrespond			
	• The combined flocoul: urea a rolam monia) ជាដ • Thus 2 cu. meters of w	ation-filtration-oh he wate ro ythe eq vater/bather have f	nionination pr univalent of 24 to be treated t	ooess reduces the COD (exoluding ມີ g ເຈັ້ນໃກ່ ບົມດິນ-meter- o remove the pollutant load.			
	the COO reduction is 20	a lahi on filitation ()% higher, ie, 2.4)	azonanion-Ci g KMn O⊿cutr	C filtration chlori nation process. n.			
	 Thus only 1.67 out met in a smaller treatment p 	ters/bather have ti lant.	o be treated to	remove the pollutant load, resulting			
COD Reduction Summary	 Flooculation-filtration-o Oz onation-GAC threat 	Norination:80% on:20%					
Effects of GAC Filtration	 GAC destro ys ozone a mos whilecaraine to elem 	ind chlorine and or	an oonvert am	monia chloramines suoh as			
	GAC adsorbs organio	matter and microo	rganisms and	may become biologically active,			
	inoreasing contaminant		Nonediagation), In an interview of			
	ozone's ineffectiveness may in fact exceed that	in oxidizing major due to og one.	bather oontai	ri-nants, COO reduction by GAC			
Cost of Ozone Generators	Ozone Proc	duction Rate (g/h	l)	Approximate			
(noting wing perphetal	Air Feed (15 wt.%ம்0₃) 02Feed (11	ົ້ນwt. %i ປີຊ)	Cost			
equipment)		2-	7	\$4,000-\$11,000			
	12-200	20-320 \$10,000-\$25,000					
		750-1	800	\$35,000-\$60,000			
Impact of Equipment Cost	• The additional capital r capital costs through lo	requirements for a Wer operating exp	full ozone–G. enses dan tak	AC system are high and recovery of e many yea _{rs} .			
	 This process is cost ef 	fective only for lan	ge, heavily us	ed pools.			
Generation of Bromine	 Ozione la sometimes u 	sed to gen erate av	/alijable bromi	ne for sanitizing whidpods (ie, spas).			
From Bromide Ion	 Aspartest at 25°C with) a CO ozonator (3	δg/ħ)showed	an efficiency of only 50 %. The			
	efforency w coldone lowe decomposition	er at a typical span	temperature o	if 40°C due to increased opone			

6. CORONA DISCHARGE (CD) OZONE: MODIFIED DIN DESIGN						
A Full Row Ozonation	Applicability	• New in	ptallations			
<u>Hartwio 1996</u>	Process Sequence	• Flocau offgas (lation (optional), ozonation, mixed media filtration, ozone destruction, and chlorin ation.			
	Filter Construction	Requir space 1	res ozone-resistant sand filters, sized to allow sufficient head for ozone contacting.			
	Ozone Injection	Main s	tream or side stream			
	Recommended	 Varies 	from 0.15–10 norm depending on water facility.			
	Uzone _{Do} sa _{ge}					
	Contact Time	 No dat 	ta available (DIN design requires ≥ 2 min.).			
	Aqueous <i>Szone</i> Destruction	∎A GA0 well as	្លី (argenation the sand media destroys the dispolved opone as chlorine.			
	Chlorine Dosage	• <u>DIN d</u>	esign requires 0.5 ppm			
	Turnover Time	∎~6 hoι	JFS.			
Concerns	 Flooculation-filtration 	1-ohlorina	tion can remove 80% of the pollution load.			
	 Birninating flocculation much more expensive 	ion will se e ozonatio	nously affect contaminant removal and put more emphasis on			
	•The low a turn over n	ate wiji aj	so a fiect contaminant rem o.a),			
B. Partial Row Ozonation	Applicability	 Retroft 	to existing installations.			
Hartwig (1996)	Pro¢e S	■Filitati (n. só e stream o oratí (n. contacting/GAC filitation , cifgas			
	Sequence	czone d	estruction, and chlorination.			
	% of Full Row	Typical	=10-50%			
	Ozonation	Recomm	mended 25-40%			
	Recommended Ozone Dosage	•Varies⊺	from 0.15–1.0 ppm depending on water facility.			
	Contact Time	 No data 	a available (DIN design requires ≥2 min.).			
	Aquelous Olzone	■A comb	 A combination contact chamber and GAC filter is employed, 			
	Destruction	howeyer	howeyer, some prefabricated systems do not destroy ozone in			
	Children Dataset	solgtion on in offgases				
	Chionne Losage	• DIN 19	643 requires 0.5 ppm.			
0	Tumover Rate	<u>a~6 bou</u> r	re Maria da anti-anti-anti-anti-anti-anti-anti-anti-			
Concerns	 Lack of flocoulation, in DIN 19643. 	use of on	ly partial flow ozonation, and a lower turnover rate than used			
	Alsgesgn 	ient of Pi	Opesses Aland B			
Factors Affecting	Combined Unionine		• No data available.			
Di Sinfection Rate	OHP Character I Oursense D		• No data avallable.			
	Chemical Oxygen D	emano	• No data available.			
Distriction UDJectives	Bacterial Colonies		NO GATA AVA LA DIE.			
	E.con		• No data available.			
Wigae Control Out-this of Contominants	 Although ozone is to: 	<u>xiù tù mai</u> '- D'N 10	ny species of algae, it is not used as the primary sanitz en-			
UXIDATION OF CONTAMINANTS	 Since use of ozone t reduction by about 20 	via DIN 18 ≥≊ Kooron	9643 only increases the non-urea and ammonia CDD area to chloriostico) and also moving a water ourse and an			
	effortion GAC filter for	na teomo A biología	ared to onionnation) and also requires a water purge and an ally active), any cioniferent departure from DIN 19643 meas			
	will result in a lower in	s, Diologia oorease ir	any autoe), any significant departure from whith acts specs.			
	•For example a pro-	norease in CDD reduction. Dess with attiff coculation, with only 10 % of 4.11 flow, a metion, and with a				
	furnover time of 6 hours oannot be expected to even oome close to the COO reduction achieved by DIN 19640.					
Cost	 Expensive compared 	d to oonve	entional ohlorination (see Sheet 5).			
	 Actual cost will yary 	according	to the type of system employed.			
Cost Bfectiveness	•The primary applicat	ion of CD	czonation is in water facilities with high bather loads.			
	■The cost affe other he bather contaminants	ss of mod and main	jlfjed DlN system sw≬l diepend on how well they remone tain acceptable water quality.			
	 Asimentioned above DIN 19643. 	some of	the modifications are expected to remove far less COD than			

	7.00) PPE	R, SILVER,	AND,	ZINC			
Sources	Copper - Copper-silver innizers and cartridges, copper sulfate, and copper chelates							
	with citric acid and triethanclamine.							
	and giver compounds so has giver oride, and giver nitrate.							
	Zino JZino-silver Cartridges.							
Disinfection Date For Silver	Silver(pph)		99 9%	Kill TI	ne (mins.) ₍	ŧε.	%///@25≣C कd pH 75	
Wuhman and Zobrist 1958	10					432		
	30.					86		
	90					32		
	270					13		
	* h watero ontai 25 and 70 % re-	ning (specti	8Uppbotal bely Killtin	her, 1 ne als	0 and 100 pp c increased	om dr hv:3	nl onde i on increased kill time by mins, for each 10 opm bardness	
Swiggering Proj Testion	 Shermas sho 	me fe	La constituit	Gritt.Tu	ба с мітатіа	50 T.C	al disin dation - Patterial crimes	
Shapiro and Hale 1937	were unaffected	and	consisted o hmat infecti	fS.au cos	ireus, S. albi	is po is, ar	nd streptccocci which can cause	
Disinfection Data for Copper-	Swimming Poo) Tes	t; High bad	teria c	cunts (14,00	0-62	,000 cfu/mL) were observed on	
Silver Ionizer w/o Chlorine	three successiv	e peri	icdic tests ir	i a 16,	000-gal pcc	I (Wo	jtowicz 1988)	
	300	gal.	SpaTe _{st} i w	(ከ 4]	Batiher≤at4i	ΰĒCŀ	j (4€F) (Sa _{nd} iel j996)	
					Before Use		After 15 mins."	
	Standard Pla	te Cr	yunt, SPC		<1.mL		>3,000/mL	
	Total & Fecal	Colif	orm, MPN^		<u>) of 5 positiv</u>	е	4 cf5 positive	
	Fecal Stret		si, MPN		Jof5 positiv	<u>e</u>	5 of 5 positive	
	A) Most Probab Stretocccci (MP	ie nu N) wa	moer, B)⊟∖ as5 of5po:	e ^{n ar} sitive.	er 30 mins, 3	9 - C1	was > 3,0 W crum Lang Fecal	
Bisinfection Bata For Copper.	Copper (ppm)	Sil	ver (ppm)	-Aγ.	ୟ (ppm)		One-Mint <u>d</u> e % Kill	
Silver, and Chlorine	0.39		0		0		1	
Kutz, Landeedn, Yahya, and	0	1	0.06		0		2	
Geibalia	0.48		004		U		(
	0	+	0		02		99.9	
	.4 <i>/</i> - To sta urana dar		1104 		<u>uz</u>		99.99	
	 Chloride ion,is 	ne in v know	well water u 19 to reduce	がい on からり	iy otoz ppm actericidal et	onior Fe <u>c</u> tia	ide. eness of silver.	
Disinfection Data For Zinc	 Antibacterial p 	roperf	ties of zinc a	are mu	uch less than	i for c	cpper or silver.	
Algae Control Data For							Copper (ppm)	
Copper	Algae		- % Cont	ď	Algistat	lc	Algerdal	
Fitzgerald and Jackson 1979	Chlorella py.		0		0.12-0.1	15		
			100		021-0.4	14	>ũố	
	Phomi Kilum In.		U 100		0.14-0.2	<u>/1</u>		
	Physics		100		0,09	14	>0.0	
Rigge Control Data For Silver	- Silves at 64 pp	/. h. uma	chown to k		otivo zaziod	t Hua	20,0	
Adamson and Sommerfeld 1980	 siner at 64 pp must ard algae. 	o was	s shown to t	je ene	cove againsi	t blue	-green out not against green or	
Algae Control Data For Zinc	 Zinc is much le 	ess ef	fective than	coppe	erby a factor	· cfa	bout 10.	
Widation of Contaminants	■ Copper, ⊴iver,	and a	<u>eire d'en ot</u>	00 <u>s</u> ge	ss oxidative (apa(αΐγ.	
Staining Potential	 Silverhas a te 	ndenk	cyto adsorb	cnte	surfaces, cre	ating	a potential for staining.	
	# Copper can ca	use v	i <u>sible locali</u> :	ed st	<u>zining zboye</u>	02-	0,3 ppm-	
	 Even below thin time since all ac 	s oon ided (centration ; copper and	a gene silver	eral discolora eventuali y pi	rtion recipi	of pool surfaces will oocur over tate from the water.	
	 For this reas or needed basis.), ∞p	per and sh	er con	taining algo	ides :	should be used only on an as	
Precipitation Potential	■ Zincicain precij cause doudγw	oʻitate ater.	asbasiczin	ic cart	omanie ani com	ncenti	rations of a few PPm and ma V	

8. COPPER-SILVER IONIZERS										
Bavide Bascription	• An electrolytic cell consisting of a pair of coppensilien electrodes, a DC power supply, and									
	control panel.									
	Device is installed in water return line to pool or spa									
Principle of Operation	•As water 1	•As water flows through the cell, a DC ourrent generates soluble copper and silver ions.								
Recommended Ion	Copper	0.2-0.4 ppm								
Concentrations	SIIVer	~20_40ppb (a	suming gui u copper	- giver electrodes).						
Recommended Av. U	0 to ~0.2 p	pm.								
Mightenance of Chiorine	•The extre	mely jow recommend	ied av. Ci will be very	diffpult to measure because it is at the						
Concentration	Dottom oft	he scale.								
	et iii _{iii} ais contarninai	o be difficult to ma nt exidation.	mian under the twm	demands of UV depomposition and						
Chlorine Usage	 The main 	chlorine demand in	i outdoor swimming p	cols is due to the combined effect of						
	thermal/UN	/decomposition and	contaminant oxidation							
	 In resider 	itial pools, chlonne o	onsumption due to su	nlight exceeds that due to oxidation of						
	c otaminai	nts, whereas, in publi	cp cds with high bath	er loads, the reverse may be true.						
	 The prese 	ance of copper and .	silver ions will not rea	luce this demand and the low level of						
	chlorine wi	Il not be sufficient to	o satisfy this demand	, consequently, significant reduction in						
Di stati a	chicrine us	age (as claimed) will	not be possible.							
Lishrection	 Swimming poid and spatests show unso ceptable disinfection in the abserole of ohlione. 									
	 Since comparison and silver contribute minimally to the disinfection rate in the presence of an 									
	CI, the extremely low recommended av. CI level of 0.2 ppm would be insufficient for									
	adequate o	isintection in stabiliz-	ea poois. commended free child	ine levels 4e, 1_2 com in a ods and 2_						
	5 portain a	anny,o urrent Morrire atta) would be becom	son for adequate dirio	faction (and contaminant evidation)						
ക്ഷം മാൻവ്	i or pprinting I off record	pended o creent rates	sary of adequate disin a conditional distant	feall)						
	 Copper is 	most effective again:	st mustard algae and l	east effective against black algae.						
Dvictation of Contaminants	• C @0005 30	ud cibrer de rot eertri	is the to wid still of su	imming and waters, othersingers						
oxidation of containinants	- C uper ar	ing Stoel go tot contra	d ablada a laval a40.2.	withing poor watero onarmitants,						
	• The low le	evel of recommended	a chionne level otu z	ppm will not be sufficient to adequately						
Staining/Discoloration	 Silventen 	ds to adsorb onto sur	faces oregting a poten	rial for staiping						
oran n gibibooloran an	 Connector 	as to accord onto sci as esuce visible local	iaces oreaang a poten ized <i>staining a</i> bove D.1	7–9.2 ppm						
	 Even belo 	w this concentration	<u>, and stanning above or</u>	on of pool surfaces will occur over time						
	since all ad	Ided copper and silve	er eventually precipitat	e forn the water.						
	•For this r	eason, conner and	siber containing algi	cides should be used only on an as						
	needed ba	sis.								
Electro de Maintenance	 Spale buil 	d-up on the electroide	es necle satates period	c cleaning with acid.						
NSF Approval	 Ionizers h 	ave not been approv	ed.	-						
Cost	• lohizers a	re veryexpensive gh	/ehthelrm himaiette o	ton d ^{isi} nfect ^{io} n						
		Gallons	lonizer	Replacement Electrodes						
1	Pool	10,000-25,000	\$1,000-\$1,500	\$100-\$150						
	Spa	200-1,000	\$400-\$900	\$100-\$150						

9. COPPER-SILVER CARTRIDGES										
De Vice Description	 Acc Ording to the patent literature the heart of the device is a canister or cartridige cont alning a carrier (ie, grahular alumina coated with ~ 1% metallic silver), copper metal, and a filler insterial (ie, activated carbon). 									
	 Durren present 	 Current cattroges contain ceramic pellets (~3 mm in diameter). In addition, copper is present in readily soluble form instead of copper metal. 								
	• The ca for flow	artridge car adjustmen	n beins it, for in	erted into a plastic ho stallation after sand o	susing, fitted with a pr DE filters.	an inlet and cutlet and a value				
	 Small 	cartridges a	are also) available and are in	stalled inside cartr	idge filters on pools or spas.				
Principle of Operation	• Flow o dis solve	:fwater (~3 es the meta	30 % of t allic silv	full ficw) through the v er.	unit quickly dissch	es the copper and very slowly				
Technical Assessment	• The ca rate, • (r spas), v	artridge onl Ndeed , IN o vhereas ch	yworks ne minu Ilorine ii	swhen the pump is or Ite theo antridge treat In the water treats 100	n and adds verylit slessthan 0,3 % () % .	tle to the overall disinfection of the pod water (영 %, In				
	• Silvero • Their b пеоезsi	ontaining bactericidal itating perio	o <u>ea mi</u> l effecti odio ole	o cardfoges (storcalle veness gradually dec aning <u>(White 1972).</u>	reased due to buil	ean Antown since the 1930's. d up of organio slimes,				
Aqueous Copper Conc.	•002-0),06 _{pp} m –								
Aqueous Silver Conc.	001-0).06 ppm	31. 2 3							
Recommended Sanitizers	Pools:	Stabilize w	utuon b	pmicitanunc acid and	d maintain 0,4-06	ppm av. Cl				
	Spas:	C++		Potassium Monopei	rsulfate (PMPS)	AV. U				
	oan na Each II	<u>zer upuor</u> ce Desade	ns	PPm 9.2 (equivalent to 4	2000 av. (1)	- as Lichion 				
	V0/aaldy/	<u>se tosage</u> ∙Do⇔oe	-	~28 (equivalent to ~	13 oom av. Ci)	~12 0070				
Maintenance of Available	The low recommended ary CL(0.4 = 0.6 ppm) will be difficult to measure because it is peak									
Chlorine	the bott	om of the s	scale.	It will also be difficult	to maintain under	the twin demands of				
	thermal/UV decomposition and contaminant oxidation.									
Disinfection Data: Pools <u>Sandel (997</u>	 Tests showed that low concentrations of copper (0.025 ppm) and silver (0.03 ppm) provided by a cartridge had little effect on the disinfection rate all one or in ichi of sanitized and stabilized nool water. 									
Disinfection Data: Spas Gerba & Naranjo 1999	∎⊺ës≣s days pr	ទៅលើមៀក iorto introd	usignific duction	art kiljing ofbacteria ofbacteria.	even (hough unit) action anto when P	haddreen in uperation for 3				
Disinfection Concerns	Pools	 Tests sl recomme disin fecti 	now that ended o on in st	t the cantridge has an hIcrine level cf0.4–0 abilized pods.	ninimal effection (.6 ppm is consider	disinfection, consequently, the red too low for effective				
	Spas	 Disinfed 	tion ma	iybe affected, since l	PMPS is not as the	ermally stable as chlorine.				
Algae Control	• The 🕫	oncentration	ns of ch	ni ofne and o opper an	d silver are con sid	lered too low for effective				
	algae o	ontrol.			-	-				
Contaminant Oxidation	Pools	• The re of oxidation	om meh of bath	ded chiorine jevel of er contaminants.	0.4–0.6 ppm is ooi	nsidered to o low tor effective				
	Spas	Sheet No	ία:οπρ), <u>11),</u>	oses at 20%/hour and	d will be 80% deca	impased in 8 hours <u>(see</u>				
	-1 -	 This the 	<u>ermal in:</u>	stability may affect its	: oxidative capaoit	γ.				
Uniorine Usage	Claime		•60 <u>-</u> 80	* reduction.		the second state of the				
	Assess	men	• Since cartridg usade 2	tests show that the o le is unlikely to delive and allow effective di	annage does not (n on the claim of u sinfection, algae o	enhance disintection, the iptc 80 % reduction in chlorine critrol, and contarrinant				
	oxidation.									
NSF Approval	 Coppe 	r-siber car	tridges	have not been appro	ved.					
Cost		Volur, Gallo	me Ins	Flow Controller Plus Cartridge	Replacement Cartridge	Cartódge Lifetime				
1	-	Gallons Plus Cartridge Cartridge Lifetime								
	Pool	10,000-2	25,000	\$149-199	\$69-99	6 months				

10. ZINC-SILVER CARTRIDGES									
System Description	Pools The u	nit consists of a plastic housing with an inlet and outlet with a flow control value							
	and a r	and a removable cartridge that contains zinc, silver and limestone.							
	• An hs	• An Inset containing Trichlor tablets is available as well as a flow controller for non-							
	ohlorin	ohlorine operation.							
	Spas _Acad	idge containing the mineral reservoir is designed to \$t inside the cartridge \$ter-							
Principle of Operation	 Flow of water t 	nrough the cartridge oan slowly dissolve zino and silver.							
	the cartridge an	s ಮರಗಿ as bao ಜಗತ ಗ್ರಾಹ yರ್ಲಿಂಗಾಲ ಪ್ರಜ್ಞಾರ್ಯಿಂಗ ಕ್ರೀ ಮೇಲೆ ಮಗತುವು ರಗಪೇ e min ಆಡುತ್ರಿ ಪ್ರೀಪಿಗೆಗೆ Hundergo inactivation.							
Technical Assessment	• The cartridge !!	ofks only when the pump is on and adds very little to overall disinfection rate.							
	 Indeed, in one 	minute the cartridge treats less than 0.3% (<3% in spas) of the pool water,							
	whereas chlorin	e in the water treats 100%.							
	 As with c opper 	-siverclartndges, build-up of organic lairnes may affect the performance.							
Aqueous Zinc Conc.	 No data availat 	le.							
Aqueous Silver Donc,	No data availat								
Sanitizer Options	Pools Maint	ain 0.5–10 ppm av. Cl.							
	■Snock (PMPS	ono e a week with Tib-o alcium hypochionite or Tib-potaissium mon Opersultate)per 10,000 gals.							
	ia,Fori∧je	or-chlorine.operation shock 2-3 times a week with PMPS.							
	Spas Maint	ain 0.5–10 ppm chlorine or bromine.							
	 Shock 	onoe a week with Diohlor or PMPS according to manufacturers							
	recom	nendalions.							
Maintenance of Available Chiofine	e it will be difficu dec omo csiti on a	: will be difficult to maintain 0.5–1 0 ppm av. Clunder the twin demands of thermal/UV : crop esiti di ande intaminant, erdati di							
Disinfection Concerns	Pools The lo	The low recommended chlorine residual of 0.5–1.0 ppm is considered too low for							
	adequa	a dequarte disinfection in stabilized po d's.							
	•The n	on-chlorine option is not expected to provide adequate disinfection or algae							
	oontrol								
	• Based signifio	on their poor bactericidal properties, silver and zino ions are not expected to antiv inorease the disinfection rate.							
	∙h the	absence of chlorine, the cartridge itself provides a very slow bacterial kill rate.							
	Spas • The re	commended chlorine (and bromine) levels will be insufficient to meet the							
	. deman	ds of the higher bather den stylin spas (Brigano and Carney 1984).							
	 Shock 	ing once a week is considered insufficient to exidize bather contaminants.							
	 Bromí 	he will reduce the effectiven egg of silver due to in solubility of silver bromide.							
Algae control	 Because the or 	ncentration of zino and silver in the pool water are not available, their effect on							
	algae costrol ca	nont be assessed							
Oxidation of	 The low recorn 	mended chlorine level of 0.5–1.0 ppm is considered too low for adequate							
Contaminants	oontaminant oxi	dation.							
	 Shocking of the 	e pool with PMPS is much less effective than with chlonne, eg, if ib of PMPS is							
iš lotine (ispane	equivalent to on	y no oral mushok dose oronionne. 50.87% multitor							
Lation is also	û seesement	■ 50-07 % rendote of. ■ The cartridge is unlikely to deliver on the claim of reduced chloring wrong and							
	Assessment	 The cardingle is uninery to deriver on the orall offendoed chlorine usage and allow offentive disinfection, alloge control, and contaminant oxid ation. 							
Cost	20.0000-aal Po	al Elow Controller \$100: 6-month Cartridge v \$20							
	40.000-gal. Poo	Flow Controller ~\$330: 6-month Cartridge ~\$150							
	250-1.000-oal 9	pa 6-Month Ca ^{rrid} ge							

	11. POTA S	SIUM MONO	PERSUL	FATE(PMPS)			
Formula	= 2KHSD_= KHSD_= K_SD_						
Assay	■85%						
Active Oxygen	∎~45%						
Form	 White granular po 	wder					
Uses	Non-ohlorine Sho	ak in Pools	• Dosag	e: 1lb/10,000 gals	5.		
	Saniti zer/Oxidi zer	rin Spas	 Used a 	ilone or in combin	ation with ohlorine or silver,		
Stability in Water				Decomposit	ion Rate (% per hour)		
<u>Wátowicz 2000</u>	Sunlight				~23		
	Room Temperatu	re (~70 ° F)			~4		
	ି≄pa i emperature	(~ጎዢዋF)			~2Û		
Disinfection in Pools	 Tests with E. coli 	at 25°C (77°F)show th	hat PMPS is unsui	itable as a swimming pool		
<u>Gerba & Naranio 1999</u>	disinfectant with inactivations of only ~17 % at 2 mins, and 75 % at 45 mins.						
Disinfection in Spas				% Inactivation @	240°C (104°F)		
<u>Gerba & Naranjo 1999</u>	Time (mins.)	S. faecal	is	E. hirae	P. aerugenosa		
	2	58		28	15		
	15	>99,999	9	>99,9999	>99,9999		
	■Data for Ecovish	0W >99999999	% in active	tíon ín <u>2</u> mins.			
	 Data for chlorine ((3 ppm)show	higher 2	min. inactivations	; of 99.99%; тог		
	S. faecalis and 993	<u>97 for P. aem</u>	ngerov s i				
Algae Control	 No data are availa 	able on the eff	ect of PM	IPS on swimming	pool algae.		
Oxidation of	Ammonium ion			 No reaction. 			
Contaminants	Ammonia			 No data avai 	lable.		
	Monochloramine			 Nitrate ion is 	main oxidation product.		
	ijrea			 Nitrate ion is 	main oxidation product.		
	Amino Aoids, Cre	atinine, Urio	Aoid, eto	 No data avail 	lable.		
	Other Organic Ma	tter		ේ 🕅 ්න්ත තැබේ	lable.		
Disadvantages and	 Oxidizies nitrogen 	compounds t	o nitrate i	on, which is a nut	rient for bacteria and algae.		
Deficiencies	 Not stable in wate 	r subjected to	heat or e	exposed to sunligr	nt.		
	 Reduces pH and ; 	alkalinity due 1	to formati	on of bisulfate ion).		
	2KHSO, KHSO, k	GSO₄ → 3KH	SO₄ + K₂	SO₄+20			
	3HSO4 + 3HCO2.	ا3 + عم3 3 م	COz+3Ā	20			
	 The recommender 	d 1-lb. shook	dose is e	quivalent to only 1	/3 of a 1-lb, chlorine shook,		
1	■Veryexpensive: \$	ວ້ວ໌ p e r 2ວິເວັຣ	or \$ii2.	2/ib. equivalent av	ı. ü.		

12. POTASSIUM PEROXYDISULFATE (PPS, PERSULFATE)								
Formuia	■ K₂S₂ Ūa							
Assay	•>95%							
Forgin	 White granular por 	wier						
Stability in Water				D	ecomposit	tion Rate (%/day)		
_	Sunlight					~5		
	Swimming Pool Te	emperature			Vé	s∟ry slow		
	Spa Temperature				Ve	ry slow.		
Uses	 Blended with Dichl 	l ar for use in sha	x k treati	ment,				
	 As non-chlorine ox 	idizing agent us	sually in (combinatio	⊳n with copp	per.		
Effection filsinfection	 No data are availat 	hle.						
	 By comparison with 	h monopersulfa	te, persu	ulfate itself	probably h	as negligible anti-bacterial		
	properties even in th	he presence of c	;oppero	rsiverion	5.			
Effect on Algae Control	 No data is available 	e.						
	-Best gyess is that	persulfate itself	<u>bas neg</u>	ligible anti	- <u>algal prop</u> e	erties.		
Oxidation of Contaminants	 PPS is normally a 	sluggish oxidam	t oompai	red to pota	issium mon	opersulfate and requires		
	activation as discus	sed below.						
	Effect of Sunlight	 Sunlight dis 	ssociates	s persultat	e into react	ive sultate ion radioals;		
		$S_2O_3^{-1} + U_V$	$/ \rightarrow 280$	<u>.</u>				
		 sulfate i on 	radicals	are effect	ive in œida	tion of organic matter		
		(Minisci et a	l 1983).					
	Effect of Silver	÷ 3ïverten o	ipos≅ïbiy	ျပာထားကိုက်	on ≤o ano anj	aiyze oxidention reactions of		
	and Copper ions	persultate vi	ia format	tion of diva	ilent silver (or trivalent copper) (Minisci		
		et al 1983).						
		 Ine eπectr 	veness a	at swimmir	ig pool coni	pentrations has not been		
Deficiencies		acournented	1. 					
Derrolendies	•Normally reads Si	ew iγ with bather	<u>'c ditam</u>	inants.				
	 Heduces pH and a 	ilkalinity due to t	formation	n of bisulfa	nte ion on di	ecomposition:		
	$S_2Us^2 + H_2U \rightarrow 2H$	150-70		~				
	ZHSU2 + ZHCUg	$\rightarrow 280^{-4} + 200$	J ₂ + 2H ₂	<u> </u>				
Formulated Product	noduct	Application		Uosage	S DDC	Cost		
				pper	PP5			
	PPc with 16%	Ppm						
	conner sulf st e	Space	m 2	4 ideal)	1.5 pp	400/10 ID:		
		• Conn €r conc:	s. >0.2-0)3 nnmca	n cau se sta	anina		
		 Questionable 	disinfect	tion and e	xidation.	9.		
<u> </u>		 Product is ex 	nenaŭre	aon and o				
			paiave.					

13. POLYHEXA METHYLENE BIGUA NIDE (PHM B)						
System Components"	Component	Component Runction		Rupption		
	20 % PHM B		Bacteriostat			
	Quat ^e			Algistat		
	30% Hydrogen Pero xide		Quidant			
	Enzyme Cleaner		Filter Cleaner			
	Cheiating Agent		្រ	ceMenai Chelanion		
		Swimmi Concern	ng Pool tratigos	Testing and A divisionent		
	PHMB	6_10 pp	m active	Weekly		
	Quat	2-2.5 pp	m active	Weekly		
	Hydrogen Peroxide	027	ррП	Eveny3-4 weeks		
Disinfection Data	Organism			MIC+(PHMB)		
<u>Block (991</u>	ξooví	4 ppm		4 ppm		
	S. aureus			4 ppm		
	P. aeragenosa			20 ppm		
Swimming Pool Disinfection Testing of PHMB System	•h a first year test (90 days), 27 % of the of water samples showed bacterial oounts >200 cfuper rol us. 4% for a chlorine control pool					
Sandel 1996	In a second veartest (100-days) 57 % of the of water samples showed hadtenal counts.					
	>200 cfuper mL vs. 0% for a chlorine control poci.					
	•The incubation perions for the	netwict est s	were 7 and	d 2 da ys,re spectively , indicating		
	development of PHMB-resistant bacteria.					
	 Formation of vactorial stimes was also absended during the tests. 					
Algae Control Data		MIC (ppm)				
del Corral & Johnson 1996	Algae		Quet	РЫМВ		
	Chiorella pyrennoidosa (Gree	en)	1.0	≤0,5		
	Phormidium faveolarum (Blac	ok)	5.0	<05		
	Eugtigmatos vischeri (Yellow)	≥1≺5	> 20		
Oxidation of Contaminants	• Hydrogen peroxide is a poor oxidant for ammonia, urea, and other organic matter.					
Incompatibilities*	•Chlorine and bromine orderers.					
	Ozone and persulfate oxidizers.					
	•Copper and silver based algoddes.					
	•Most danifiers and deaners.					
	■Some gjain and gcale ijihibiturs.					
Potential Problems	 Excessive use of PHMB, Quat, and Enzyme can cause foaming and impart odor and off-taste to the water. 					
	Build-up of organio matter.					
	Development of persistent haziness and doudiness.					
	 Development of biological growths, eg, pink slime and water mold. 					
	=Development of PHMB resistant bacteria <u>(Sandel 1996).</u>					
Cost	•More expensive than chlorine.					

A) Product literature.

B) Alkyldimethylbenzyl ammonium chloride.

C) Minimum inhibitory concentration.

14. ULT RA VIOLET (UV) LIGHT A ND HYDROGEN PEROXIDE							
System	 A flow through cell containing a UV lamp (emitting ~254 nm radiation). 						
-	• Hydrogen peroxide.						
Principle of Operation	The water, dosed with ~40 ppm hydrogen peroxide, flows through the cell.						
	■UV light ₍ fe, UV	photo	ns) dissociat	tes hydrogen pero:	xide (H ₂ O ₂) ihto reactive hydro xyl		
	radioals (HO) that	are th	e actual oxid	izing ageht:			
	$H_2O_2 + UV \rightarrow 2HC$	3					
	 The UV light itsel 	lfalso	can inactivat	e microorganisms :	such as bacteria.		
Application	 Strall spas. 						
Factors Affecting Disinfection	UV Light • Although UV light can inactivate 99.9% of E coli in 1 min. <u>Auhite</u>						
Rate	<u>1972</u>), the residence time of the water in the UV cell is much le						
			than 1 min.	. ■Forexample, a:	ssuming 1 gal, volume for the UV		
		oell attached to a 300-gal, spa with a water flow rate					
		gal thin the residence time			f the water in the cell is only 0-1		
	min.						
	 UV light intensity decreases with time. 				ith time.		
	 Water turbidity and build up of tims on the lamp reduce 				or tims of the lamp reduces uv		
	I had a see Descride		light intensity.				
	nyu ujarrau w	⁰ e	■ Hydrogen peroxide is a very poor disintectant. ■ouu ppm insertivates 0.0% of E colling 10,20 mins				
	Hurtroud Radioal	<	• No data av	ailable	So mins.		
Disinfection Concerns	- No capitizer reciv	dual in		avaive. utride the cell			
- isineed at earliers	 The full time of microarganisms such as basted is your lens because only about 120 of . 						
	• The follotine of moroorganisms such as bacteria is very long because only about 130 of I the spa water flows through the cell her minute and the residence time of the spa water in 1						
	the UV oell is mud	h less	than 1 minu	te.			
	• Bacteria can repair damage from "Wight.						
Contaminant Oxidation Data	Conditions Hudrogen peroxide: 50 ppm						
Woitowicz 2000	Nitrogen: 2.26 ppm per compound						
	Akalinity: 80 ppm						
	 Calcium hardness: 250 ppm 						
	•pH7.4						
		■T =~ 23°C.					
		∎UVI	ightiradiati	ព្រព័ត្តខេះ4 ងឈូឆ្ន			
	Compound	- %	Yield of	% Yield of	%TOC" Reduction		
		Ar	mmonia	Nitrate?			
	A mmonia		•	U	•		
	Urea Bra Bickno		1	U	2-		
	Chating		15	1			
	orycine = Alasisa		00 50	0	/U 48		
	Valine		82	2			
	Lysipe		25	2 0	47		
	Glutarnia Anid		58	Ő	 69		
	A) Lack of nitrate formation indicates that ammonia ner se or biomodust ammonia is						
	Age all division under en anno rendre Hill radials.						
	B) Total organio oarbon. C) Calculated.						
Spa Test	• A UV-hydrogen peroxide_svstem (15 gal/min.) was evaluated over a 3-week period in a						
	250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis						
	showed no oxidation of urea atter 107 hours of operation.						
NSFXpproval	 No NSF approval (NSF 1985). 						
Cost	 Asystem for a small spa will probably cost several hundred dollars. 						
Overall Assessment	 The system cannot provide a dequate disinfection and contaminant oxidation. 						

15. REACTION OF ANCILLA	RY CHEMIC/	ALS WITH CH	ILORINE (CI) AND BROMINE (Br)*
	Reacts	Forms	Other Potential Problems
	with	Combined	
	Clor Br [®]	ClorBr℃	
[Algicides]			
Alkyldimethylbenzylammonium chloride	Yes	Yes	 Excessive concentrations can cause foarning.
Dialky net y by zy annonium of ionole	Ϊ ^ŭ S	i"≩S Xara	Can precipitate by formation of floos that can
Alkyidimethyidichiofobenzyiammonium	res	res	cause filter problems.
chionide			 Can form Wornamines and chi gramines.
Poly[oxyethylene(dimethylimino)ethylene-	Yes	Yes	 Can form bromamines and chloramines.
(dimethylipping)ethylene diphloride)			
Copper Citrate or Gluconate	Yes		 Excessive concentrations can cause staining.
Copper Triethanolamine	Yes	Yes	 Eccessive concentrations can cause staining.
			 Can form bromamines and chloramines.
Silver Compounds (eg. silver oxide)			 Excessive concentrations can cause staining.
[Antiscalants and Stain Preventers]			
Ur9ahopho \$honates(eg, hydrox yethyl-	Yes		 Decomposition by sunlight and chlorine produces
i dehe diphosphonio aoid (phosphate ions.
			ជាមុខទាមទទួលបានក្បារបែរ of phosphate, which is a
			nutrient for bactena and algae and can cause i
			cloudy water due to precipitation of calcium
Polymeria (eg. polygopilates)	Vec		prospriate.
Polymeno (eg, polyaoryrates)	Tes		
[Clarifiers/Elocculating Agents]			
increaric (eq. aluminum s: #ate)			
Polymeric (e.g. polydimethyl diallylammo-	Yes	Yes	
nium chloride)			
·			
[Defoamers]			
Polydimethylsiloxane	Yes		
[Degreasers]			
Enzymes	Yes		
[lints]			
Organic Dyes	res		
[Fragrances]	Ye-		- Marca at a construction and a construction description of a construction of a cons
ulganic compounds such as aconophi Indebudes – ketenes and esters	16		• Since They apperently can cause to aming, they
formulated with other reactive organic			ale formulated with a devanier soon as polydimathylailovana
ingre dents such as propylene glycol and			
alverine.			

A) Ancillary chemicals can also react with non-chlorine oxidizing agents such as potassium monopersulfate.

B) The rate of reaction will depend on the concentration and functionality of the organic matter as well as the chlorine (or bromine) concentration, temperature, and sunlight duration and intensity.

C) The greater the nitrogen content, the greater the potential for formation of combined chlorine or bromine.

References

- Adams, V.D., et al, "An Evaluation of an Electrolytic Process for the Removal of Ammonia and Urea from Simulated Spa Water", Symposium Series Vol. IV, pp 44-52, 1999, NSPI National Meeting, Las Vegas, NV,
- Adamson, R.P. and M.R. Sommerfeld, "Laboratory Comparison of the Effectiveness of Several Algicides on Isolated Swimming Pool Algae", *Applied and Environmental Microbiology*, 39(2)(1980):348-353.
- ANSI/NSPI-4 199X Standard for Aboveground/ Onground Residential Swimming Pools.
- ANSI/NSPI-5 1995 Standard for Inground Residential Swimming Pools
- AOAC, Official Methods of Analysis of the American Association of Official Analytical Chemists, 15th Edition, 1990, Arlington, VA.
- Bauer, C. R. and V. L. Snoeyink, "Reactions of Chloramines with Active Carbon", Journal of the Water Pollution Control Federation, 45(11)(1973):2290-2301.
- Block, S. S., "Disinfection, Sterilization, and Preservation", Lea & Febiger, Philadeliphia, PA, Fourth edition, 1991.
- Brigano, F.A. and J. F. Carney, paper presented at the 84th meeting of the American Society of Microbiology, St. Louis, MO, March 4-9, 1984.
- del Corral, F. and B. Johnson, "Comparitive Algicidal, Algistatic, and Bacteriostatic Evaluations of Selected Commercial Algicides", Symposium Series Vol. I, pp 18-25, 1996, NSPI National Meeting, Phoenix, AZ,
- DIN 19643 (German Industry Standard: In English): Treatment and Disinfection of Swimming Pool and Bathing Water (Berlin, Beuth Verlag, 1984).
- Dohan, J.M. and W.J. Masschelein, Ozone Science and Engineering 9(1987): 315-.
- Dorfman, L.M. and G.E. Adams, "Reactivity of the Hydroxyl Radical in Aqueous Solution", National Bureau of Standards, NSRDS-NBS 46 (Washington, DC, US Government Printing Office, 1972).
- Dumas, Bob "Bromine Stabilizer Passes Early Test", *Pool & Spa News*, January 13, 1999, pp 170

- Eichelsdorfer, D., "Use of Ozone for Treatment of Swimming Pool Water", in Ozone Treatment of Waters for Swimming Pools, R. Rice, Ed., International Ozone Association, Norwalk, CT, 1982, pp. 82 and 91.
- Eichelsdorfer, D. and J. Jandik, "Long Contact Time Ozonation for Swimming Pool Water Treatment", Ozone Science and Engineering 7(2)(1985):93-106.
- Elliasson, B. and U. Kogelschatz, "Ozone Generation with Narrow-Band UV Radiation", Ozone Science and Engineering 13(3)(1991):365-373.
- Fitzgerald, G. P., "Loss of Algicidal Chemicals from Swimming Pools", *Applied Microbiology* 8 (1960): 269-274.
- Fitzgerald, G. P., and M. E. DerVartanian. "Factors Influencing the Effectiveness of Swimming Pool Bactericides." *Applied Microbiology* 15 (1967): 504-509.
- Fitzgerald, G. P., "Compatibility of Swimming Pool Algicides and Bactericides", *Water and Sewage Works*, 115 (1968): 65-71.
- Fitzgerald, G. P. and D. F. Jackson, "Comparative Algicidal Evaluation Using Laboratory and Field Algae", *Journal of Aquatic and Plant Management* 17 (1979): 66-
- Gardner, J. "Chloroisocyanurates in the Treatment of Swimming Pool Water." *Water Research* 7 (1973): 823-833.
- Gerba, C.P. and J. Naranjo, University of Arizona, Unpublished Data, 1999.
- Grenier, J. and R. Denkewicz, "Improved Test Method for the Evaluation of Algicides and Algistats for Swimming Pools", Symposium Series Vol. II, pp 63-68, 1997, NSPI National Meeting, Chicago, ILL.
- Hartwig, W., "To DIN or not to DIN: Ozonation of Pool Water in Public and Commercial Pools", Journal of the Swimming Pool and Spa Industry, 2(1) 1996:25-33.
- Hafer, D., "A Field Evaluation of the Bi-Polar Oxygen Sanitation System/Mineral Purification System", Journal of the Swimming Pool and Spa Industry, 1(3)1995:39-51.
- Hass, C. N. and R. S. Engelbrecht "Chlorine Dynamics during Inactivation of Coliforms, Acid-Fast Bacteria, and Yeasts", *Water*

Research 14 (1980):1749-

- Hoff, J. C., "Inactivation of Microbial Agents by Chemical Disinfectants", U.S. Environmental Protection Agency, Report no. EPA/600/2-86/ 067, 1986.
- Hoigne, J. and H. Bader, "Rate Constants for Reaction of Ozone with Organic and Inorganic Compounds - I: Non-dissociating Organic Compounds", *Water Research*, 17(1983):173-183.
- Hoigne, J. and H. Bader, "Rate Constants for Reaction of Ozone with Organic and Inorganic Compounds - II: Dissociating Organic Compounds", Water Research, 17(1983):184-185.
- Hoigne, J., H. Bader, and W. R. Haag, "Rate Constants for Reaction of Ozone with Organic and Inorganic Compounds - III: Inorganic Compounds and Radicals", *Water Research*, 19(1985):993-1004.
- Kinman, R.N., Water and Wastewater Disinfection with Ozone", Critical Reviews of Environmental Control, 5(1975):141-152,
- Kurzman, G. E., "Ozone-Granular Activated carbon for Disinfection and Purification of Swimming Pool Water", in Ozone Treatment of Waters for Swimming Pools, R. Rice, Ed., International Ozone Association, Norwalk, CT, 1982, p. 106.
- Kutz, S. M., L. K. Landeen, M. T. Yahya, and C.
 P. Gerba, "Microbiological Evaluation of Copper-Silver Disinfection Units", 4th Conference on Chemical Disinfection, Binghamton, NY April 10-13, 1988.
- Kuwabara, J. S. and H. V. Leland, "Adsorption of Selanastrum capricornutum (Chlorophyceae) by Copper", *Environmental Science and Technology* 5(1986):197-
- Lange's Handbook of Chemistry, J.A. Dean, ed., McGraw-Hill Book Co., New York, 13th Edition, 1985.

Legend Labs, St. Paul, MN

- Marks, H. C. and F. B. Strandskov, "Halogens and their mode of action", *Annals of the New York Academy of Sciences* 53(1950):163-
- Minisci, F., A. Citterio, and C. Giordano "Electron Transfer Processes: Peroxydisulfate, a Useful and Versatile Reagent in Organic Chemistry." Accounts of Chemical Research 1983, 16, 27-32.

John A. Wojtowicz – Chapter 7.3

- Nalepa, C.J. et al, "Development of a Bromine Stabilizer for Outdoor Pools", Symposium Series Vol. I, pp 12-17, 1999, NSPI National Meeting. Las Vegas, NV.
- National Sanitation Foundation (NSF), Ann Arbor, MI (see website at www.NSF.com)
- National Spa and Pool Institute (NSPI), Alexandria, VA.
- Nelson, G.D. "Special Report 6862 Swimming Pool Disinfection with Chlorinated-striazinetrione Products." Monsanto Chemical Co. St. Louis, MO, March 1967.
- Olin Corporation. Unpublished Data on Swimming Pool Evaluation of Electrochemical Generation of Bromine. 1983.
- OSHA, U.S. Occupational Safety and Health Administration, Washington, DC; see Federal Register 40, 47261 (1975).
- Ozone in Water Treatment: Applications and Engineering, B. Langlais, D. A. Reckhow, and D. R. Brink, Eds. Lewis Publishers, Chelsea, MI, p113, 1991.
- Palmer, C. M. and T. E. Maloney, "Preliminary Screening for Potential Algicides", *Ohio Journal of Science*, 55(1955):1- .
- Penny, P.T. and R.J.G. Roycroft, "Swimming Pool Dermatoses associated with the use of Bromine Disinfectant" *British Medical Journal* August 13, 1983.
- Rice, R. G. "Chemistries of Ozone for Municipal Pool and Spa Water Treatment", Journal of the Swimming Pool and Spa Industry, 1(1)1995:25-44.
- Sandel, B.B., Unpublished Data on Testing of Copper-Silver Cartridge, 1992.
- Sandel, B. B., "Disinfection with Chlorine Products – Some Lessons Learned", Symposium Series Vol. I, pp 80-85, 1996, NSPI National Meeting, Phoenix, AZ,
- Shapiro, R. and F.E. Hale, "An Investigation of the Katadyn Treatment of Water with Particular Reference to Swimming Pools", Journal of the New England Water Works Association, 51(1937):113-
- Snoeyink, V. in Water Quality and Treatment, F.
 W. Pontius, Ed., 4th Edition, McGraw-Hill, Inc., New York, NY, pp. 812-813, 1990.
- Stumm, W. "The Decomposition of Ozone in Aqueous Solution", *Helvetica Chimica Acta*,

37(1954):773-

- Taylor, D. S. and J. D. Johnson, "Kinetics of Viral Inactivation by Bromine", in A. J. Rubin, ed., Chemistry of Water Supply and Treatment, Ann Arbor Publishers. Ann Arbor, MI, 1975, pp 369-407.
- Tiefenbrunner, F., "Problems with the Direct Ozonation of Swimming Pool Water", in Ozone Treatment of Waters for Swimming Pools, R. G. Rice, Ed., International Ozone Association, Norwalk, CT, 1982, p. 152.
- Watt, P.M, D.I. Kennedy, J. Naranjo, J. Sandoval, and C.P. Gerba, "Comparison of the Disinfectant Capabilities of Various Spa Products", Symposium Series Vol. IV, pp 71-76, 1999, NSPI National Meeting, Las Vegas, NV.
- White, C.G., Handbook of Chlorination, Van Nostrand Rheinhold, New York, 1972.
- Wojtowicz, J. A., Unpublished Data on Testing of UV Ozonators, 1985.
- Wojtowicz, J. A., Unpublished Data on Testing of Copper-Silver Ionizer, 1988.
- Wojtowicz, J. A., Unpublished Data on Ozone Reactions, 1989.
- Wojtowicz, J. A., Unpublished Data on Testing of UV-Hydrogen Peroxide, 1989.
- Wojtowicz, J. A., Unpublished Data on Bromine Stabilization, 2000.
- Wojtowicz, J. A., Unpublished Data on Potassium Monopersulfate Stability, 2000.
- Wojtowicz, J.A., "Chlorine Monoxide, Hypochlorous Acid, and Hypochlorites", Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Vol. 5, John Wiley & Sons,

Inc., New York, NY, pp 932-968, 1993.

- Wojtowicz, J. A. "Relative Bactericidal Effectiveness of Hypochlorous Acid and Chloroisocyanurates" Journal of the Swimming Pool and Spa Industry, 2(1) 1996:34-41.
- Wojtowicz, J. A. "Ozone", Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Vol. 17, 1996, John Wiley & Sons, Inc., New York, NY.
- Wojtowicz, J. A. "Fate of Nitrogen Compounds in Swimming Pool Water", Symposium Series Vol. III, 1998, pp 40-44, NSPI National Meeting, New Orleans, LA.
- Wojtowicz, J. A. Letter to the Editor, Journal of the Swimming Pool and Spa Industry, 3(1) 1998:41-43..
- Wojtowicz, J. A., "Chemistry of Nitrogen Compounds in Swimming Pool Water", Journal of the Swimming Pool and Spa Industry, 4(1) 2001:30-40.
- Wojtowicz, J. A., "Use of Ozone in the Treatment of swimming Pools and Spas" Journal of the Swimming Pool and Spa Industry, 4(1) 2001:41-53.
- Wojtowicz, J. A., "Cyanuric Acid Technology", Journal of the Swimming Pool and Spa Industry, 4(2) 2001:9-16.
- Wuhrman, K. and F. Zobrist, "Investigation of the Bactericidal Effet of silver in Water", *Schweiz. Z. Hydrol.* 20(1958):218-
- Zhang, Z., "Disinfection Efficiency and Mechanisms of 1-Bromo-3-chloro-5,5dimethylhydantoin", Ph. D. Thesis, Univ. of Houston, 1988.